If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta = $
$\frac{\pi }{6}$
$\frac{\pi }{3}$
$\frac{\pi }{3}$ or $\frac{\pi }{6}$
$\frac{\pi }{3}$ or $\frac{2\pi }{3}$
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
If $0 \le x < 2\pi $ , then the number of real values of $x,$ which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is . . .
If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
If $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ then $\theta = $
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to: